The 3PG model Applications to the Portuguese production forest

Margarida Tomé

Technical University of Lisbon, School of Agriculture

Forest Research Centre

PORTUGAL

Summary

- × Overview of 3PG (brief)
- × 3PG calibration (example with *E. globulus*)
- × 3PG validation (examples at plot and stand level)
- × Improving "information for managers" (hybridization)
- **×** The 3PGpjs2.7.xls implementation
- × Examples

Overview of 3PG

3PG is

- ×A tree growth model based on Physiological Principles that Predict Growth
- ×Bridges the gap between mensuration-based growth and yield models and process-based, carbon balance models
- ×Provides fully dynamic predictions of biomass pools and soil water use
- ×Includes process-based and empirical relationships
- ×Is based on a monthly time step

3PGpjs file

Comparison with empirical models

×Advantages

- applicable under changing conditions
- can be adapted for a range of species
- parameterised using stand-level data
- provides explanation, aids understanding

× Disadvantages

- not as widely understood as empirical growth models
- not necessarily as accurate, either
- can require data not readily available
- less detailed output
- naïve treatment of soil nutrition, allocation based largely on size, poor predictor of canopy development and of mortality

Input data

- × Climate data
 - monthly mean temperature, radiation, rainfall, VPD
 - observed or long-term average data of the same variables

imes Site and soil descriptors

- ✓ latitude
- soil texture and maximum soil water capacity
- fertility rating (0-1)
- imes Also need stand initialisation data
 - ✓ foliage, stem+bark+branches and root biomass
 - ✓ stocking

Outputs

- × Biomass pools (wood+bark+branches, leaves and roots)
- × Stocking
- × Available soil water
- × NPP
- × Evapotranspiration
- × Average dbh
- × Underbark volume
- × Stand basal area

Main components of 3PG

- × Production of biomass environmental modification of light use efficiency; constant ratio of NPP to GPP
- **×** Biomass allocation affected by growing conditions +tree size
- × Stem mortality probability of death; self-thinning
- × Soil water balance single soil layer model; evapotranspiration determined from Penman-Monteith equation
- × Stand properties from biomass pools and assumptions about specific leaf area, branch+bark fraction, and wood density

Overview of 3PG Biomass production

Overview of 3PG

Biomass production and intercepted radiation

- imes Observation shows that
 - Above-ground production is linearly related to intercepted radiation
 - Gross production is proportional to intercepted radiation
 - Slope of these relationships is light use efficiency ε (g_{DM} MJ⁻¹).

This finding is the basis for many simple models

Radiation intercepted (GJ m⁻² year⁻¹)

Light use efficiency

- × Is affected by climatic factors (e.g. temperature) and site factors (e.g. soil-water status)
- × Varies seasonally, but annual values more stable
- × Gross production is affected by modifiers functions that vary between 0 and 1 - related with climatic and site factors (multiplicative or according to the law of minimum)

Overview3PGCalibrationInformationValidationValidationof 3PGparameters*E. globulus*managersplot levelstand level3PGpjs file

Calculating intercepted radiation

× Beer's law determines light transmitted through canopy

$$Q_{int} = Q_0 \left(1 - e^{-k \, LAI} \right)$$

Note diminishing returns from high leaf area indices

Gross canopy production (GPP)

imes Intercepted radiation is converted into biomass

$$GPP = \varepsilon Q_0 \left(1 - e^{-k LAI}\right)$$
Intercepted radiation

where ε (g_{DM} MJ⁻¹), light use efficiency:

- Measures the efficiency of conversion of solar radiation into biomass
- Depends on environmental and site factors

Overview3PGCalibrationInformationValidationValidationof 3PGparametersE. globulusmanagersplot levelstand level3PGpjs file

Gross canopy production (GPP)

× Light use efficiency is related to canopy quantum efficiency, α_{c} (mol mol⁻¹)

$$\epsilon(g_{DM} M J^{-1}) = gDM/mol mol/MJ \alpha_c$$

Conversion factors

gDM/mol=24

mol/MJ=2.3

Net Canopy Production

× Respiration is assumed to be a constant fraction of gross canopy production:

$$NPP = Y GPP$$
$$= Y \varepsilon Q_0 \left(1 - e^{-k LAI}\right)$$

where $Y \approx 0.47$

This is a contentious assumption, which greatly simplifies treatment of respiration Overview3PGCalibrationInformationValidationValidationof 3PGparametersE. globulusmanagersplot levelstand level3PGpjs file

Growth modifiers in 3PG

× Each environmental factor is represented by a growth modifier or function of the factor that varies between 0 (total limitation) and 1 (no limitation)

Factor	Modifier	Parameters
Vapor pressure deficit	$f_{VPD}(D)$	k _D
Soil water	$f_{SW}(\theta)$	$ heta_{\it max}$, $m{c}_{ heta}$, $m{n}_{ heta}$
Temperature	$f_T(T_{av})$	T _{min} , T _{opt} , T _{max}
Frost	$f_F(d_f)$	k _F
Site nutrition	$f_N(FR)$	f _{NO}
Stand age	$f_{age}(t)$	n _{age} , r _{age}

Validation 3PG Calibration Information Validation **Overview 3PGpjs file** stand level of 3PG parameters Effects of *environment* on canopy production × All modifiers affect canopy production: $\alpha_{c} = f_{T} f_{F} f_{N} \min\{f_{VPD}, f_{SW}\} f_{age} \alpha_{cx}$ where α_{c_x} is maximum canopy quantum efficiency \times In 3-PG the combination of modifiers $\varphi = min\{f_{VPD}, f_{SW}\}f_{age}$

also affects canopy conductance, and is called *PhysMod* in the program

Temperature (°C)

Overview
of 3PG3PGCalibrationInformationValidationValidationof 3PGparametersE. globulusmanagersplot levelstand level3PGpjs file

Frost growth modifier $f_F(dF)$

 $f_F(d_F) = 1 - k_F(d_F/30)$

where

 d_F = number of frost days in month k_F = number of days of production lost for each day of frost

Soil-water growth modifier $f_{SW}(\theta)$

$$f_{SW}(\theta) = \frac{1}{1 + \left[\left(1 - \frac{\theta}{\theta_x} \right) / c_{\theta} \right]^{\eta_{\theta}}}$$

where

- θ = current available soil water
- θ_x = maximum available soil water
- c_{θ} = relative water *deficit* for 50% reduction.
- n_{θ} = power determining shape of soil water response

$f_{VPD}(D) = e^{-k_D D}$

where

D = current vapor pressure deficit k_D = strength of VPD response

where

- t = current stand age
- t_x = likely maximum stand age
- r_{age} = relative stand age for 50% growth reduction
- n_{age} = power determining strength of growth reduction

Overview of 3PG Biomass partitioning

Biomass partitioning

× NPP is partitioned into biomass pools $(t_{DM} ha^{-1})$:

- ✓ roots (W_r) , leaves (W_l) , above-ground woody tissue (W_{wv})
- × Partitioning rates (η_l , η_r and η_{wy}) depend on growth conditions and stand dbh (d)

× Litter-fall (γ_l) , root-turnover (γ_r) and mortality $(m_i$ is the fraction of the biomass per tree in the pool *i* that is lost when a tree dies) are also taken into account:

$$\Delta W_{l} = \eta_{l} NPP - \gamma_{l} W_{l} - m_{l} (W_{l}/N) \Delta N$$
$$\Delta W_{r} = \eta_{r} NPP - \gamma_{r} W_{r} - m_{r} (W_{r}/N) \Delta N$$
$$\Delta W_{wy} = \eta_{wy} NPP - m_{wy} (W_{wy}/N) \Delta N$$

Root partitioning

× Partitioning to roots affected by growth conditions through φ (*PhysMod=min{f_{VPD}, f_{SW}}f_{age}*) and by soil fertility (*m*):

$$\eta_r = \frac{\eta_{rx}\eta_{rn}}{\eta_{rn} + (\eta_{rx} - \eta_{rn})m\varphi}$$

where

 $m = m_0 + (1 - m_0)FR$ η_{Rx} = root partitioning under very poor conditions η_{Rn} = root partitioning under optimal conditions

Foliage and stem partitioning

× Above-ground partitioning based on the following equations for allocation for stem and leaves:

$$\eta_{I} \approx (dW_{I}/dt)/(dW/dt) = dW_{I}/dW$$

$$\eta_{wy} \approx (dW_{wy}/dt)/(dW/dt) = dW_{wy}/dW$$

imes The following allometric relationships

$$w_{l} = k_{l}w^{b_{l}} \qquad w_{wy} = k_{wy}w^{b_{wy}} \qquad w = a_{t}d^{n_{t}}$$

are used to show that η_l and η_{wy} can be expressed as a function of quadratic mean diameter (*dg*)

Foliage and Stem Partitioning

imes Allocation to leaves

$$\eta_{I} = (dW_{I}/dW) = k_{I}b_{I}W^{b_{I}-1} = k_{I}b_{I}(a_{t}d^{n_{t}})^{b_{I}-1} = a_{I}d^{n_{I}}$$
$$(a_{I} = k_{I}b_{I}a_{t}^{b_{I}-1} \text{ and } n_{I} = n_{t}(b_{I}-1))$$

× Allocation to stem (woody parts)

$$\eta_{wy} = \left(dW_{wy} / dW \right) = k_{wy} b_{wy} W^{b_{wy} - 1} = k_{wy} b_{wy} \left(a_t d^{n_t} \right)^{b_{wy} - 1} = a_{wy} d^{n_{wy}} \left(a_{wy} = k_{wy} b_{wy} a_t^{b_{wy} - 1} \text{ and } n_{wy} = n_t \left(b_{wy} - 1 \right) \right)$$
Overview3PGCalibrationInformationValidationValidationof 3PGparametersE. globulusmanagersplot levelstand level3PGpjs file

Foliage and Stem Partitioning

× Above-ground partitioning is then based on the foliage:stem partitioning ratio (p_{lw})

$$p_{lw} = \frac{\eta_l}{\eta_{wy}} = \frac{a_l d^{n_l}}{a_{wy}} = \frac{a_l}{a_{wy}} d^{n_l} = \frac{a_l}{a_{wy}} d^{n_l - n_{wy}} = a_p d^{n_p}$$
$$\left(a_p = pfsConst, \ n_p = pfsPower\right)$$

× Then

$$\eta_{WY} = \frac{1 - \eta_r}{1 + \rho_{IW}}, \quad \eta_I = \rho_{IW} \eta_{WY}$$

Aboveground partitioning versus tree-size

× Increasing dbh decreases foliage partitioning and increases stem partitioning

Overview of 3PG Biomass loss and mortality

Validation

stand level

Root-turnover and litter-fall

- × Root-turnover is a constant fraction of W_r ($\gamma_r = 0.01 \text{ month}^{-1}$)
- × Litter-fall is an agedependent fraction of foliage biomass

Validation

stand level

Stem mortality (based on self-thinning)

 $w_{\rm S}(N)$ - average woody weight for current stocking

 $w_{s}(N) \leq w_{sx}(N)$ from the self-thinning line

If $w_s \le w_{sx}(N) \Rightarrow$ no mortality (1) If $w_s > w_{sx}(N) \Rightarrow$ self-thin to N'(2)

$$N' = 1000 \left(w_{wyx0} / w_{wy} \right)^{2/3}$$
$$\Delta W_i = -m_i \frac{W_i}{N} (N - N')$$

where m_i is the fraction of biomass per tree in the pool *i* that is lost when a tree dies

Overview of 3PG Soil water balance

Soil water balance

- imes Soil water balance based on single soil layer
- imes Uses monthly time steps

Inputs:

rainfall and irrigation

Losses are:

- interception = fixed % of rainfall
- evapotranspiration Penman-Monteith equation
- excess over field capacity lost as run off

Evapotranspiration

- × Evapotranspiration is calculated using the *Penman-Monteith* equation
 - Directly affected by VPD and radiation
- × Canopy conductance:
 - determined by LAI
 - affected by growth conditions VPD, soil water and age
- × Boundary layer conductance:
 - is assumed constant (0.2 m s⁻¹)

Overview of 3PG Management and information to managers

× Fertilization and irrigation

- Fertilization can be considered by changing the fertility rating (FR) parameter
- Irrigation can be considered in several ways:
 - 1. By adding it to the precipitation days
 - 2. By indicating a value of minimum available soil water different from zero - it starts irrigation as soon as this threshold is attained
 - 3. By providing a list of ages and Ml ha⁻¹ year⁻¹ it will changes the amount of irrigation at every year indicated in the list

× <u>Thinning</u>

- Thinning is simulated by indicating:
 - 1. The year of thinning
 - 2. Thinning intensity number of trees that are thinned
 - 3. Thinning type ratio of biomass of leaves, woody and roots of an average thinned tree and an average tree of the stand
- It is possible to simulate several thinnings along the rotation

× <u>Defoliation</u>

- Defoliation can be considered by indicating
 - 1. The year
 - 2. The percentage of leaves that remain

× Volume under bark prediction

- Woody biomass is converted into wood biomass through the ratio between branches+bark and the woody biomass (R_{Ww}) and then divided by wood density (ρ)
- Wwoody=Wwood+Wbark+Wbranches
- So Both R_{Ww} and ρ are modeled as a function of age

$$Vu = \frac{W_{woody} (1 - R_{Ww})}{\rho}$$

× Basal area prediction

 Woody biomass of the mean tree is first predicted through division by stand density (N)

$$\overline{W_{woody}} = \frac{W_{woody}}{N}$$

 Quadratic mean diameter (dg) is then predicted through the inversion of the allometric equation for tree woody biomass prediction

$$\overline{w_{woody}} = k \ dg^{a} \implies dg = \left(\frac{\overline{w_{woody}}}{k}\right)^{\overline{a}}$$

 Finally G is predicted by multiplying the basal area of the mean tree by stand density

$$G = N \frac{\pi}{4} dg^2$$

Overview of 3PG Summary of 3PG parameters

3PGpjs file

× Summary of 3PG parameters (1/2):

- Biomass partitioning and turnover
 - Allometric relationships & partitioning
 - Litterfall & root turnover
- NPP & conductance modifiers
 - Temperature modifier (fT)
 - Frost modifier (fFRost)
 - Soil water modifier (fSW)
 - Fertitlity effects
 - Age modifier (fAge)
- Stem mortality & self-thinning

Overview3PGCalibrationInformationValidationValidationof 3PGparametersE. globulusmanagersplot levelstand level

× Summary of 3PG parameters (2/2):

- Canopy structure and processes
 - Specific leaf area
 - Light interception
 - Production and respiration
 - Conductance
- Wood and stand properties
 - Branch and bark fraction (fracBB)
 - Basic Density
- Conversion factors

3PGpjs file

Calibration of 3PG - E. globulus

3PG parameters *E. globuls* managers plot level stand level ^{3PGpjs file}

Information

Validation

Validation

Overview of

3PG

Calibration

Sands,2004):

- Default can be assigned some generic value, e.g. based on work with other species, or from a priori knowledge
- Observed can be directly measured, e.g. via gas-exchange analysis
- Empirically estimated (statistics) estimated using experimental data, e.g. by regression analysis
- Estimated (tuned) can only be estimated indirectly, e.g. by adjusting its value to optimize the fit of some output to observed data

Overview of
3PG3PGCalibration
E. globulsInformation
managersValidation
plot levelValidation
stand level3PGpjs file

- × Calibration was made for the four types of parameters
 - Default and observed parameters were first fixed
 - Empirically estimated parameters were then estimated using available data, namely
 - Trees destructively sampled for biomass determination
 - Litterfall data or literature references for the species
 - Remaining parameters were "tuned" with data from permanent plots:
 - Plots with no or low restrictions to growth (e.g. Trials with irrigation and fertilization)
 - Plots with serious restrictions to growth (nutrients and/or water)

Calibration *E. globuls*

Information managers Validation plot level Validation stand level 3PC

3PGpjs file

Ferilization and irrigation trial for eucalyptus		
Soil texture	Sandy	
Fertility rating	1	
MaxASW	150	
Irrigation	YES	

Calibration *E. globuls*

Information managers Validation plot level Validation stand level 3PC

3PGpjs file

Ferilization and irrigation trial for eucalyptus		
Soil texture	Sandy	
Fertility rating	1	
MaxASW	150	
Irrigation	YES	

3PG

Calibration *E. globuls* Information managers Validation plot level

Validation 3P

3PGpjs file

6

Ferilization and irrigation trial for eucalyptus		
Soil texture	Sandy	
Fertility rating	0.4	
MaxASW	150	
rrigation	YES	

Information Overview of 3PG Calibration Validation 3PG E. globuls

Ferilization and irrigation trial for eucalyptus Soil texture Sandy Fertility rating 0.4 MaxASW 150 Irrigation NO

Validation

stand level

3

4

predicted

5

6

Improving "information for managers" (hybridization)

× Volume under bark prediction

- ✓ Woody biomass is converted into wood biomass through the ratio between branches+bark and the woody biomass (R_{Ww}) and then multiplied by wood density (ρ)
- Wwoody=Wwood+Wbark+Wbranches
- So Both R_{Ww} and ρ are modeled as a function of age

$$Vu = \frac{W_{woody} (1 - R_{Ww})}{\rho}$$

× Basal area prediction

 Woody biomass of the mean tree is first predicted through division by stand density (N)

$$\overline{W_{woody}} = \frac{W_{woody}}{N}$$

 Quadratic mean diameter (dg) is then predicted through the inversion of the allometric equation for tree woody biomass prediction

$$\overline{w_{woody}} = k \ dg^{a} \implies dg = \left(\frac{\overline{w_{woody}}}{k}\right)^{\overline{a}}$$

 Finally G is predicted by multiplying the basal area of the mean tree by stand density

$$G = N \frac{\pi}{4} dg^2$$

Hibridization

- The hibridization is a tentative of combining different types of models
 - A process-based model that:
 - is not excessively input demanding
 - but still able to reflect the effect of climate changes
 - as well as the effect of management practices such as fertilization, irrigation, weeding ...
 - or the impact of pests and diseases
 - With an empirical growth and yield model that gives a more detailed output

× Objective of the "hibridization" procedure

- To improve basal area (G) and underbark volume (Vu) prediction by developing allometric equations based on existing empirical data
- To develop an equation for dominant height (hdom) prediction

× The "hybrid" model is named GLOB-3PG

Overview of Validation Validation Information Calibration 3PG managers × Error in G prediction (3PG) 10 5 Error in G m² ha ⁻¹ (3PG) 0 -5 -10 -15 ٤.

-20

0

10

20

Age (years)

30

40

ValidationValidationplot levelstand level

3PGpjs fi

× Error in G prediction (hybrid model)

Information Validation Overview of Calibration Validation stand level 3PG managers × Allometric relationship for <u>Vu</u> 800 700 600 $Vu = kh Ww^{ah}$ 500 N 1000 V m³ ha-¹ $kh = \beta 0 + \beta 1$ 400 N 1000 $ah = \gamma 0 + \gamma 1$ 300 200 100

0 100 200 300 400 500 Ww (Mg ha⁻¹)

<u>Calibration</u> Overview of Information Validation Validation 3PG managers × Error in Vu prediction (3PG) 20 10 Error in V m³ ha ⁻¹ (3PG) 0 -10 -20 -30 -40 -50 -60 2000 4000 6000 8000 10000 0

Stand density (ha⁻¹)

Overview of Calibration Information Validation Validation 3PG stand level managers × Error in Vu prediction 20 10 Error in V m³ ha ⁻¹ (new model) 0 • • -10 -20 -30 -40 -50 -60 0 2000 4000 6000 8000 10000 Stand density (ha⁻¹)

Overview of Calibration Information Validation Validation 3PG **3PGpjs file** stand level 3PG managers × Allometric relationship for 40 hdom 35 30 Dominant height (m) $hdom = kh W^{ah}$ 25 N 1000 20 $kh = \beta 0 + \beta 1$ $ah = \gamma 0 + \gamma 1 \frac{N}{1000}$ 15 10 5 0 200 0 100 300 400 500 600 Aboveground biomass (t ha⁻¹)

♦ <1000 ♦ 1000<=N<2000 ♦ N>=2000

Validation of 3PG at plot level *E. globulus*

Validation at plot level - *Eucalyptus globulus*

- × Validation was carried out by comparing observed versus simulated values of stand variables
 - Woody biomass
 - Stem wood biomass
 - Leaf biomass
 - ✓ Basal area
 - Stand volume
- × Site characterization (FR, MaxASW) was obtained with the help of a expert on soils by opening a soil profile close to each plot

Overview of	3PG	Calibration	Information	Validation	Validation	
3PG	parameters	E. globulus	managers	plot level	stand level	3PGpjs file

Example for one permanent plot				
Site index	21.5 m at 10 years			
Initial stand density	1111 trees ha ⁻¹			

Overview of	3PG	Calibration	Information	Validation	Validation	
3PG	parameters	E. globulus	managers	plot level	stand level	3PGpjs file

Example for one permanent plot			
Site index	21.5 m at 10 years		
Initial stand density	1111 trees ha ⁻¹		

× With the prediction residuals we can compute several evaluation statistics:

- Average (measures model bias)
- Average of absolute values, sum of squares, etc (measure model precision)
- ✓ 5% and 95% percentiles (measure prediction)
- Modelling efficiency (computed as R-square in linear regression models)

~

➤ The above statistics can be computed by classes of stand and/or environmental variables in order to detect bias or low-precision in relation to any of them

Validation of 3PG at stand level *P. pinaster*

Validation at stand level - maritime pine

× Validation was carried out in Mata Nacional de Leiria, a state owned forest (total area: 11,000 ha) with different types of land uses:

- Protection forest along the coast
- Mixed forests along water courses
- 8,700 ha of pure maritime pine stands managed for high quality timber
- ✓ other minor uses

× For management purposes, the forest is divided into 343 management units with an approximate area of 30 ha each, which creates heterogeneity in the forest

The National Forest of Leiria

- × For management purposes, a continuous forest inventory covers the forest since 1970
- × Inventory covers 1/5 of the forest every year

× Sampling intensity:

- 2 plots (500-2000 m²) per ha till 1980
- ✓ 1 plot (500-2000 m²) per ha 1980-2000
- ✓ 1 plot (500-2000 m²) per 2 ha since 2000

× dbh is measured in every tree, tree height is measured in a sub-sample of trees (1 out of each 5 trees per dbh class)

NFL - continuous forest inventory

➤ Data from the NFL forest inventory were analyzed and a series of 72 stands (area of ~ 30 ha) were selected

Information

Validation

Validation

stand level

3PGpjs file

× Selection criteria:

3PG

parameters

Overview of

3PG

The length of the growth series

Calibration

- Cover the range of site index, stand density
- Consider different ages to start the simulation
- Include thinnings during the simulation period

× Site characterization (FR, MaxASW) was made with the help of site index and local visits

× Observed values were obtained by averaging the several plots measured in each stand

× Validation was carried out by comparing observed versus simulated values of stand variables

- ✓ Woody biomass
- Stem wood biomass
- Leaf biomass
- Basal area
- Stand volume

× Example for one stand

The 3PGpjs_2.7 EXCEL file

Overview of
3PG3PGCalibrationInformationValidationValidation3PGpjs xls3PGparametersE. globulusmanagersplot levelstand levelfile

× 3PG is implemented in Visual Basic for applications as an Add-ins for EXCEL, available in the site

3pg.forestry.ubc.ca

- ✓ To install 3PGpjs proceed as follows:
 - a) Download the **3PGpjs27.zip** and extract all files and folders in **3PGpjs27.zip** to a folder of your choice
 - b) Open 3PGPJS27.xls and save it as 3PGpjs27.xla (Excel Add-in)
 - c) To load the 3PGpjs add-in go to Excel's TOOLS | ADD-INS menu and place a tick against the '3PGpjs27' add-in name. If you do not see this listed, use the BROWSE button to locate it. You can also unload the add-in by repeating this process and removing the tick mark
 - d) The EXCEL file 3PGpjs27.Data is prepared to run 3PG in 32bits computers

You have to modify the code that is shown to:
Private Declare PtrSafe Function ShellExecute Lib